Suppression of gene amplification and chromosomal DNA integration by the DNA mismatch repair system.

نویسندگان

  • C T Lin
  • Y L Lyu
  • H Xiao
  • W H Lin
  • J Whang-Peng
چکیده

Mismatch repair (MMR)-deficient cells are shown to produce >15-fold more methotrexate-resistant colonies than MMR normal cells. The increased resistance to methotrexate is primarily due to gene amplification since all the resistant clones contain double-minute chromosomes and increased copy numbers of the DHFR gene. In addition, integration of linearized or retroviral DNAs into chromosomes is also significantly elevated in MMR-deficient cells. These results suggest that in addition to microsatellite instability and homeologous recombination, MMR is also involved in suppression of other genome instabilities such as gene amplification and chromosomal DNA integration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nickel Increases Chromosomal Abnormalities by Interfering with the Initiation of DNA Repair Pathways

Background: Nickel is a carcinogenic, heavy metal released through industrial activities and via natural resources. It is able to cause DNA damages by reducing the efficiency of DNA repair mechanisms. However, the exact time point at which it is able to interfere with these mechanisms is not yet clearly understood. Methods: To find the most nickel-vulnerable time of repair mechanisms, human de...

متن کامل

Evaluation of gene expression of MLH1 and MSH2 between inhabitants of High Background Radiation Areas in Ramsar, Iran

Introduction: Annual effective radiation dose from all natural sources is approximately about 2.4 mSv and contribution of unnatural or man-made sources is 0.8 mSv. In some places of Ramsar, radiation dose due to radon exposure is about 3700 Bqm -3 while according to US EPA instruction radon levels should be 200 Bq m-3. Amazingly, there is not a meaningful result in the studies...

متن کامل

Discriminatory suppression of homologous recombination by p53.

Homologous recombination (HR) is used in vertebrate somatic cells for essential, RAD51-dependent, repair of DNA double-strand-breaks (DSBs), but inappropriate HR can cause genome instability. A transcriptional transactivation-independent role for p53 in suppressing HR has been established, but is not detected in all HR assays. To address the basis of such exceptions, and the possibility that su...

متن کامل

Significance of multiple mutations in cancer.

There is increasing evidence that in eukaryotic cells, DNA undergoes continuous damage, repair and resynthesis. A homeostatic equilibrium exists in which extensive DNA damage is counterbalanced by multiple pathways for DNA repair. In normal cells, most DNA damage is repaired without error. However, in tumor cells this equilibrium may be skewed, resulting in the accumulation of multiple mutation...

متن کامل

Inhibition of colorectal cancer genomic copy number alterations and chromosomal fragile site tumor suppressor FHIT and WWOX deletions by DNA mismatch repair

Homologous recombination (HR) enables precise DNA repair after DNA double strand breaks (DSBs) using identical sequence templates, whereas homeologous recombination (HeR) uses only partially homologous sequences. Homeologous recombination introduces mutations through gene conversion and genomic deletions through single-strand annealing (SSA). DNA mismatch repair (MMR) inhibits HeR, but the role...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 29 16  شماره 

صفحات  -

تاریخ انتشار 2001